61 research outputs found

    Cooperative Routing in Mobile Ad-hoc Networks: Current Efforts Against Malice and Selfishness

    Get PDF
    In mobile ad-hoc networks, nodes do not rely on any routing infrastructure but relay packets for each other. Thus communication in mobile ad-hoc networks functions properly only if the participating nodes cooperate in routing and forwarding. However, it may be advantageous for individual nodes not to cooperate, for example to save power or to launch security attacks such as denial-of-service. In this paper, we give an overview of potential vulnerabilities and requirements of mobile ad-hoc networks, and of proposed prevention, detection and reaction mechanisms to thwart attacks

    Coping with False Accusations in Misbehavior Reputation Systems for Mobile Ad-hoc Networks

    Get PDF
    Some misbehavior detection and reputation systems in mobile ad-hoc networks rely on the dissemination of information of observed behavior, which makes them vulnerable to false accusations. This vulnerability could be removed by forbidding the dissemination of information on observed behavior in the first place, but, as we show here, this has more drawbacks than a solution that allows dissemination and copes with false accusations. We propose a method for reducing the impact of false accusations. In our approach, nodes collect first-hand information about the behavior of other nodes by direct observation. In addition, nodes maintain a rating about every other node that they care about, in the form of a continuous variable per node. From time to time nodes exchange their first-hand information with others, but, using the Bayesian approach we designed and present in this paper, only second-hand information that is not incompatible with the current rating is accepted. Ratings are slightly modified by accepted information. The reputation of a given node is the collection of ratings maintained by others about this node. By means of simulation we evaluated the robustness of our approach against several types of adversaries that spread false information, and its efficiency at detecting malicious nodes. The simulation results indicate that our system largely reduces the impact of false accusations, while still benefiting from the accelerated detection of malicious nodes provided by second-hand information. We also found that when information dissemination is not used, the time until malicious nodes are detected can be unacceptable

    Performance Analysis of the CONFIDANT Protocol (Cooperation Of Nodes - Fairness In Dynamic Ad-hoc NeTworks)

    Get PDF
    Mobile ad-hoc networking works properly only if the par- ticipating nodes cooperate in routing and forwarding. How- ever, it may be advantageous for individual nodes not to cooperate. We propose a protocol, called CONFIDANT, for making misbehavior unattractiv

    The Performance of Measurement-Based Overlay Networks

    Get PDF
    The literature contains propositions for the use of overlay networks to supplement the normal IP routing functions with higher-level information in order to improve aspects of network behavior. We consider the use of such an overlay to optimize the end-to-end behavior of some special tra c ows. Measurements are used both to construct the virtual links of the overlay and to establish the link costs for use in a link-state routing protocol. The overlay attempts to forward certain packets over the least congested rather than the shortest path. We present simulation results showing that contrary to common belief overlay networks are not always bene cial and can be detrimental

    Cooperation of Nodes. In: L. Buttyan and J.-P. Hubaux (eds.), Report on a Working Session on Security in Wireless Ad Hoc Networks

    Get PDF
    In mobile ad-hoc networks nodes need to cooperate to communicate, but there are many reasons for non-cooperation. Saving power or preventing other nodes from obstructing a service are merely selfish reasons for non-cooperation, whereas nodes may also actively and maliciously deny service or divert traffic for all sorts of attacks. However, without an infrastructure to rely on, nodes depend on each other`s cooperation. In game-theoretic terms, this is a dilemma. The dominating strategy for individual nodes is not to cooperate, as cooperation consumes resources and it might result in a disadvantage. But if every node follows that strategy, the outcome is undesirable for everyone as it results in a non functional or entirely absent network. Our goals are to increase cooperation by proactively giving selfish nodes an incentive to cooperate, as well as reactively isolate selfish or malicious nodes such that they cannot continue their misbehavior. To make cooperation in mobile ad-hoc networks attractive we have to make sure that selfish behavior, i.e., a behavior that maximizes the utility of a node, leads to an outcome that is also beneficial for the network

    Nodes Bearing Grudges: Towards Routing Security, Fairness, and Robustness in Mobile Ad Hoc Networks

    Get PDF
    Devices in mobile ad hoc networks work as network nodes and relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes cooperate in routing and forwarding. For individual nodes it might be advantageous not to cooperate, though. The new routing protocol extensions presented in this paper make it possible to detect and isolate misbehaving nodes, thus making it unattractive to deny cooperation. In the presented scheme, trust relationships and routing decisions are made based on experienced, observed, or reported routing and forwarding behavior of other nodes. A hybrid scheme of selective altruism and utilitarianism is presented to strengthen mobile ad hoc network protocols in their resistance to security attacks, while aiming at keeping network throughput, or goodput, high. This paper focuses particularly on the network layer, using the Dynamic Source Routing (DSR) protocol as an example

    Traffic locality oriented route discovery algorithms for mobile ad hoc networks

    Get PDF
    There has been a growing interest in Mobile Ad hoc Networks (MANETs) motivated by the advances in wireless technology and the range of potential applications that might be realised with such technology. Due to the lack of an infrastructure and their dynamic nature, MANETs demand a new set of networking protocols to harness the full benefits of these versatile communication systems. Great deals of research activities have been devoted to develop on-demand routing algorithms for MANETs. The route discovery processes used in most on-demand routing algorithms, such as the Dynamic Source Routing (DSR) and Ad hoc On-demand Distance Vector (AODV), rely on simple flooding as a broadcasting technique for route discovery. Although simple flooding is simple to implement, it dominates the routing overhead, leading to the well-known broadcast storm problem that results in packet congestion and excessive collisions. A number of routing techniques have been proposed to alleviate this problem, some of which aim to improve the route discovery process by restricting the broadcast of route request packets to only the essential part of the network. Ideally, a route discovery should stop when a receiving node reports a route to the required destination. However, this cannot be achieved efficiently without the use of external resources; such as GPS location devices. In this thesis, a new locality-oriented route discovery approach is proposed and exploited to develop three new algorithms to improve the route discovery process in on-demand routing protocols. The proposal of our algorithms is motivated by the fact that various patterns of traffic locality occur quite naturally in MANETs since groups of nodes communicate frequently with each other to accomplish common tasks. Some of these algorithms manage to reduce end-to-end delay while incurring lower routing overhead compared to some of the existing algorithms such as simple flooding used in AODV. The three algorithms are based on a revised concept of traffic locality in MANETs which relies on identifying a dynamic zone around a source node where the zone radius depends on the distribution of the nodes with which that the source is “mostly” communicating. The traffic locality concept developed in this research form the basis of our Traffic Locality Route Discovery Approach (TLRDA) that aims to improve the routing discovery process in on-demand routing protocols. A neighbourhood region is generated for each active source node, containing “most” of its destinations, thus the whole network being divided into two non-overlapping regions, neighbourhood and beyond-neighbourhood, centred at the source node from that source node prospective. Route requests are processed normally in the neighbourhood region according to the routing algorithm used. However, outside this region various measures are taken to impede such broadcasts and, ultimately, stop them when they have outlived their usefulness. The approach is adaptive where the boundary of each source node’s neighbourhood is continuously updated to reflect the communication behaviour of the source node. TLRDA is the basis for the new three route discovery algorithms; notably: Traffic Locality Route Discovery Algorithm with Delay (TLRDA D), Traffic Locality Route Discovery Algorithm with Chase (TLRDA-C), and Traffic Locality Expanding Ring Search (TL-ERS). In TLRDA-D, any route request that is currently travelling in its source node’s beyond-neighbourhood region is deliberately delayed to give priority to unfulfilled route requests. In TLRDA-C, this approach is augmented by using chase packets to target the route requests associated with them after the requested route has been discovered. In TL-ERS, the search is conducted by covering three successive rings. The first ring covers the source node neighbourhood region and unsatisfied route requests in this ring trigger the generation of the second ring which is double that of the first. Otherwise, the third ring covers the whole network and the algorithm finally resorts to flooding. Detailed performance evaluations are provided using both mathematical and simulation modelling to investigate the performance behaviour of the TLRDA D, TLRDA-C, and TL-ERS algorithms and demonstrate their relative effectiveness against the existing approaches. Our results reveal that TLRDA D and TLRDA C manage to minimize end-to-end packet delays while TLRDA-C and TL-ERS exhibit low routing overhead. Moreover, the results indicate that equipping AODV with our new route discovery algorithms greatly enhance the performance of AODV in terms of end to end delay, routing overhead, and packet loss.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore